a-conjecture-of-mine

An exercise on polyglossy: the same problem solved on multiple languages

commit 274ac6fe94af45fd6decb1f24ba335be0d47372e
parent 8261006c52c3fa66ce41d0842591f98e8abd9d96
Author: Pablo Emilio Escobar Gaviria <pablo-escobar@riseup.net>
Date:   Sat, 15 Aug 2020 15:00:34 -0300

Switched from latex to asciimath in README.adoc

Diffstat:
MREADME.adoc | 8++++----
1 file changed, 4 insertions(+), 4 deletions(-)
diff --git a/README.adoc b/README.adoc
@@ -4,10 +4,10 @@ An exercise on _polyglossy_. The same problem solved on multiple languages.
 
 == The Problem - Mathematicians' Version
 
-Let latexmath:[S : \mathbb{N} \rightarrow \mathbb{N}] be the sum of the 
+Let asciimath:[S : NN -> NN] be the sum of the 
 digits of a natural number. Then 
-latexmath:[S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)] for all
-natural numbers latexmath:[n] and latexmath:[m].
+asciimath:[S(n + m) -= S(n) + S(m) \  (bb "mod" \  9)] for all
+natural numbers asciimath:[n] and asciimath:[m].
 
 This conjecture can be generalized for any _positional number system_. 
 
@@ -21,7 +21,7 @@ of type `uint`, `S(a + b) - S(a) - S(b) % 9 == 0`.
 
 The conjecture was 
 https://en.wikipedia.org/wiki/Proof_by_exhaustion[proved by exhaustion] for 
-the interval latexmath:[10^5] 
+the interval asciimath:[10^5] 
 in multiple language implementations. The performance of each language was then 
 avaliated as the following _(*)_: