An exercise on polyglossy: the same problem solved on multiple languages

commit 7eec5cf3b3909c9af0d00261e9862651e6b80bfa
parent fd1c4a83a5e5671c8c5d2eff9031f40917560cb6
Author: Pablo Emilio Escobar Gaviria <pablo-escobar@riseup.net>
Date:   Sat, 15 Aug 2020 13:29:12 -0300

Fixed error in an equation in README.adoc

MREADME.adoc | 2+-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.adoc b/README.adoc
@@ -6,7 +6,7 @@ An exercise on _polyglossy_. The same problem solved on multiple languages.
 Let latexmath:[$S : \mathbb{N} \rightarrow \mathbb{N}$] be the sum of the 
 digits of a natural number. Then 
-latexmath:[$S(n + m) \equiv S(n) + S(m)$] for all
+latexmath:[$S(n + m) \equiv S(n) + S(m) (\textup{mod} 9)$] for all
 natural numbers latexmath:[$n$] and latexmath:[$m$].
 This conjecture can be generalized for any _positional number system_.